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° Arrhythmogenic Cardiomyopathy (ACM) 1S an 1nherited heart disease and a Reduced Running Capacity in ACM mice. e The current Stlldy 1s still undergomg and 1S investigating a variety of outcomes.
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ACM mutation and are unable to generate CSF2 protein. Figure 4. Voluntary wheel exercise hastens disease progression in Dsg2m* expect these hearts will present with noticeable fibrotic scarring as compared to
 We compared running capacity and heart function (echocardiography and ECG mice. (A) Reduced %LVEF in Dsg2-mutants. */*/*P<0.01 vs WT, via 1-Way \
| P ' 11 th y hp y T. Do 2mut/mut d lg Zmut/mut.c‘g I.)/_ 7 : " ANOVA with Tukey’s post-hoc analysis. (B) Representative RV long-axis echo sedentary, age'matChed D ng -heterozygotes, because functional phenotypes
te emetry) in all three cohorts: W, Dsg an SE ) S]? mice. from Dsg2™* mice. Yellow arrows, valves; Ao, Aorta. (C) %LVEF and (D) %RV fractional area change (%RV FAC) was utilized to assess declined during prolonged exercise.
cardiac function against distance run using Spearman’s rho (r) correlation analyses. . . 4. .
A 3 Experimental Cohorts B : =°P w0 d * Regardless, scarring 1s likely to be more severe 1in all ACM cohorts due to prolonged
(1) WI (e, control mice . . running-based exercise exposure, a known cause of early disease onset in ACM.*¢
(), Dz, e i T Discussion of Current Results 5 Do J

(3) Dsg2™t/mut.Csf2-/- mice (i.e., ACM mice with Csf2-KO) Harvesting

 Temporal analysis demonstrated homozygous-Dsg2 mice display reduced running
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