

Alex Breihan, Austin Pauley, and Adam Dewan Department of Psychology and Program of Neuroscience, Florida State University

Introduction

Henry's and Rault's Law

*Depiction of odorants in solution not following the gas laws

*Visual depiction of Henry's and Rault's Law

Vapor Concentrations Vary

*Odor concentrations depend on what solvent they are dissolved in

Goal

The goal of this research is to find the fitted curve for each odorant in my class of molecules. This curve is different for every molecule, and it is essential for the other research in our lab, as well as research in many other similar labs. It allows us to output a specific concentration of vapor-phase odorant based on the odorant's liquid concentration. This information is very valuable, especially when delivering smells to mice in order to measure their reactions or run other tests.

Focus-Amines

Amines:

-Consist of a nitrogen atom with a lone pair of electrons -Have a rather fishy smell

Examples:

Pyridine

Cadaverine

Using Correction Factors and a Photoionization Detector (PID) to Investigate Amines' Vapor Concentrations

Summary & Future Implications

y=424.2x^{.96}

N/A

This research has added to the Dewan Lab's running list of odorants and their corresponding liquid-vapor concentration relations graphs. These are data points, and the end goal is to have a huge list of most all common odorants and their liquid-vapor concentrations in multiple different solvents. This research will be continued in the Dewan Laboratory to help achieve this.

- Oxford Academic. Retrieved March 21, 2023, from

program in NEUROSCIENCE FLORIDA STATE UNIVERSITY

Res	ults	
/ineral Oil 🔵 Wa	ter 💿 Ideal Behavior	
Vapor Concentration (ppm)		$\frac{100000}{1000}$
		j(/ov/v)
- 100000 - 10000 - 1000 - 1000 - 100 - 10 - 1	NH ₂ NH ₂ On on n [Hexylamine	 apor Concentration (ppm) 10000 1000 100 100 10 10<!--</td-->
Vapor Concentration (ppm)	NH2 NH2 9 001 01 1 [Heptylamin	 4 4
Ideal	Mineral Oil	Water
$-1073x^{1}$		v-2328v ^{.90}
$-400.2v^{1}$	V-0108v ^{.78}	y = 2020x
-403.2x	y=9100X	y = 2319x
=099.2X	y=∠545X	y=5259x
=116.1x	N/A 70	y=2267x
=21.58x′	y=135.3x ^{.78}	N/A

References

• Cometto-Muñiz, J.E., Cain, W.S., and Abraham, M.H. 2003. Quantification of chemical vapors in chemosensory research. Chem Senses. 28:467–477. • Jennings, L., Williams, E., Caton, S., Avlas, M., & amp; Dewan, A. (2022, December 26). Estimating the relationship between liquid- and vapor-phase odorant concentrations using a photoionization detector (PID)-based approach. https://academic.oup.com/chemse/article/doi/10.1093/chemse/bjac038/6961025