

Abstract

Transition metal dichalcogenides (TMDs) are layered materials with appealing magnetic and electronic. Nevertheless, in some cases, such as VTe₂, air and moisture sensitivity limits their use in real-world applications.¹⁻³ Intercalation of metals between the TMD layers is a viable approach to stabilizing these materials and controlling their magnetic properties.⁴ In this contribution, we describe intercalation of Cr into the VTe₂ structure to yield a new crystalline phase, $Cr_{0,1}VTe_2$. We report characterization of structural and magnetic properties of this compound and theoretical calculations aimed to help with interpretation of the experimental results.

Synthesis of $Cr_{1/4}VTe_2$: elemental powders (Cr, V, and Te) are combined in molar ratios of 0.25:1:4.

Chemical Vapor Transport

Investigation of Magnetic Properties of Cr-Intercalated VTe,

Gerald Ciani, Milo Adams, Michael Shatruk Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306

Crystal Structure

The crystal structure was determined via single crystal x-ray diffraction (XRD) on a Rigaku Synergy-S diffractometer using a Mo-K_a radiation source Experimental unit cell parameters Tellurium Chromium **Magnetic Properties** Variable temperature magnetic susceptibility measurements,

Compound	a (Å)	c (Å)	V (ų)	
VTe ₂	3.6380	6.5820	74.442	
Cr _{0.1} VTe ₂	3.7848	6.2646	77.671	

performed with a superconducting quantum interference device (SQUID), reveal antiferromagnetic ordering at 32 K.

m² Kg⁻¹) ₹

	<i>a</i> (Å)	с(Å)	V(Å ³)	m(Cr) μ _B	<i>m</i> (V) μ _B	<i>m</i> (total) μ _B	ΔE _{FM-PM} (eV/atom)
VTe ₂	3.6380	6.5820	74.442	-	3.37	0.22	-0.00769
Cr _{0.25} VTe ₂	3.6716	6.4011	74.730	3.19	1.86	2.20	-0.00196

Experimental and calculated lattice parameters show good agreement. The experimental unit cell of $Cr_{0.1}VTe_2$ is 3.0% longer in *a* and 2.4% shorter in *c* compared to the theoretically optimized structure of $Cr_{0.25}VTe_2$.

The negative ΔE_{FM-PM} (difference between energy of the spinpolarized (FM/AFM) and non-polarized (PM) configuration) indicates that magnetic ordering is favored in Cr_{0.25}VTe₂. The positive magnetic moments on both Cr and V sites suggest that FM ordering should be favored in $Cr_{0.25}VTe_2$, but for the experimental structure of $Cr_{0.1}VTe_2$ we observe AFM ordering. Most likely, the material might exhibit a more complex magnetic structure with noncollinear spins due to geometric frustration. Consistent with the behavior of other intercalated transitionmetal dichalcogenides, these results suggest that $Cr_{1/4}VTe_2$ is a promising candidate for exploration of complex magnetic structures for applications in future electronic devices.

I would like to acknowledge Dr. Shatruk for welcoming me into his lab and sharing his expertise on inorganic and material chemistry. I would also like to thank Milo Adams for instructing to become a better researcher and guiding me throughout my entire UROP project. Special thanks to the Florida State University High Performance Computing Center, and to the research group of Dr. Ryan Baumbach at the National High Magnetic Field Laboratory.

1. Wasey, A. & Das, G. P. *J. Appl. Phys.* **2022**, *131*, 190701. 2. Chen, W.; Zhang, J.; Nie, Y.; Xia, Q. & Guo, G. J. Magn. Magn. Mater.

- **2020**, *508*, 166878.
- 5, 30.

4. Ahamd, & Zhou, J. AIP Adv. 2020, 10, 045323.

This research was supported by the National Science Foundation (grant DMR-1905499)

Quantum-Mechanical Calculations

Density-functional theory (DFT), FPLO (v.21-61) 8x8x8 *k*-grid, GGA-PBE functional, fully-relativistic pseudopotentials

Calculated properties of $Cr_{0.25}VTe_2$ and VTe_2

Acknowledgments & References

3. Rajapakse, M.; Karki, B.; Abu, Abu, U.; Pishgar, S.; Musa, M.; Riyadh, S.M.; Yu, M.; Sumanasekera, G. & Jasinski, J. NPJ 2D Mater. Appl. 2021,