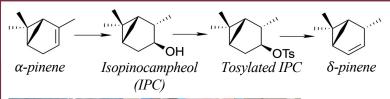
Plastics from Pine Sap: Insight into the Ring-Opening Metathesis Polymerization Thermodynamics of KE / In EMUR

Monoterpenes Ana C. Pereira, Karl A. Kinner, Mark R. Yarolimek, Brianna M. Coia, Gina A. Guillory, Heather R. Bookbinder, and Justin G. Kennemur* Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32303

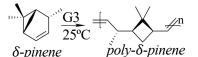

Background

- **Ring-Opening Metathesis** Polymerization (ROMP) is a polymerization reaction of cyclic olefins with high steric & thermodynamic control.
- α -pinene is a monoterpene that cannot undergo ROMP.
- δ -pinene¹ is a novel isomer of α -pinene with an accessible olefin, capable of undergoing ROMP.

Motivations

- Evaluate the potential for biomass-based chemical feedstocks to replace petrochemicals in plastics.
- Further understanding of ROMP and its steric and thermodynamic requirements.

Monomer Synthesis



Crystallized *IPC* (left): **Tosylated** IPC after 48 hours of reacting (right).

Findings

Via ROMP:

Poly- δ -pinene properties:

- Monomer RSE: 35.1 kJ/mol
- $T_{\rm g}$ (DSC): 87–101°C
- Ð (SEC): 1.06–1.35
- $M_{\rm n}$ (SEC): 4–75 kDa
- Conversion: 83–99%

Prospects:

(Co)polymerization (w/ CP, Lactam, etc) and mechanical testing.

References

¹"Ring-Opening Metathesis Polymerization of δ-Pinene: Well-Defined Polyolefins from Pine Sap." Yarolimek, M.R. et.al; ACS Macro Letters 2021 10, 760-766