

A REVIEW OF FLOOD IMPACTS ON HUMAN RESPIRATORY HEALTH

Christian Caballero, Dr. Ahamdisharaf, Dr. Azimi

Background

Chart 1. ***Mold Cycle information gathered from Jun Moon 2005***

Mold Stage	Time Elapsed	Visible?
Hyphal Growth	0-7 days	No
Spore Formation	5-7 Days	No
Spore Dispersal	7-10 days	No
Spore Germination	10-12 days	No
Spore Germination	16-	No
Spore Germination	21-28+ days	Yes, in accessible
Continues		areas w/ contrasting background

Chart 1. shows that mold is non-visible for relatively long periods while potentially producing mycotoxins that negatively impact human respiratory health

Methods

> Key words and Search Engines

"Flood*" AND "Health*" AND "Mold*" OR "Fung*" appearing more than once in study were used to create Table 2 Google Scholar, Web of Science, PubMed

> Limits

- English peer reviewed journals
- Date of publication from 2000-2021

> Additional

- 144 studies were selected with relevance to flooding and human health effects, 26 of these studies met the key words criteria, 6 of said studies were selected for Table 1. and Table 2. based on significance

Results

Table 1. Flood impacts on mold

Study	Study Design	Flood and Building	Findings
	A sampling of airborne	San Francisco Bay	No difference in biomass was recorded
	fungi from dust settled over	Area long term flood	between visible and non-visible mold.
Sylvain	a month-long time period	damaged concrete	Samples of non-visible mold had greater
et al.	from the outdoors, in units	building named	richness and diversity than samples of
2019	with no visible mold, and	inhabitable (2014)	visible mold.
	units with visible mold of 21		
	household were collected		Note: Samples of visible mold collected
			by swab also collected samples of non-
			visible mold with low distinguishing
			rate.
	1	Colorado, USA	Three times higher fungal abundance in
	2-3 months after flooding		flooded, relative to non-flooded homes
	and remediation had	50 residential home	after remediation and return of baseline
	occurred, The abundance of	basements	humidity.
2015	fungi in flooded and non		Note: Reason why fungi persists after
	flooded homes was		unclear remediation process is not stated
	calculated		despite humidity not playing a major
	- 1 1		role.
	Indoor and outdoor	Brisbane, Australia	This study suggest that there were no
	measurements of fungi were		effects of the flood in Brisbane on
He et	conducted 2 and 6 months	brick or wooden	indoor air quality, in terms of PM10,
al., 2014	after the flood in 41	residential houses	PN, fungi and bacteria concentrations.
	residential houses		Note: Despite the mention of immediate
			volunteer work as remediation, the
			specific remediation process is not
			stated.

Table 2. Flood impacts on respiratory health

Study	Study Design	Flood and	Findings
Study	Study Design	Participants	1 manigs
	Mold positive gulture	<u> </u>	no expect oncor of IMIc in MDACC's
	Mold-positive culture	Hurricane Harvey	no excess cases of IMIs in MDACC's
17	` '	Flooding (2017)	immunosuppressed patient population
	month period before	T 1	after flooding event were found.
et al. 2019	and after hurricane	Immunosuppressed	However, an increased use of mold-
	Harvey were compared	*	active antifungals after flooding was
		Anderson Cancer	observed institutionally for reasons
		Center (MDACC)	unclear.
			Note: Only the results of
			immunocompromised individuals were
			examined (may be more cautious to
			fungal exposure)
	Statistical analysis and	Hurricane	The post hurricane group showed higher
	questionnaire was used	sandy(2012)	percentages of people who reported poor
Nguyen et al.	to compare the	flooding, New	perceived general health and a higher
2019	respiratory health of a	Jersey	percentage of people who were given an
	pre and post hurricane	General population	asthma action plan
	population	in high impact and	Note: The exposure to mold for the
		low impact areas	participants tested was not examined
	200 total participants	Hurricane	An increase in positive test results shows
	were tested (100	Irene(2011) and	that the post hurricane population had
Saporta et al.	participants from 2003-	Hurricane	become more sensitized and reactive to
2017	2010 and 100 from	Sandy(2012)	the same molds affecting respiratory
	2014-2015) with 18		health
	molds to test their		Note: The exposure to mold for the
	reactivity pre and post		participants tested was not examined
	hurricanes		

Conclusions

- > Large floods like hurricanes have been the sole focus of past research
- > There has been a growing interest in this research area over the past five years
- There is an ongoing trend between recent studies and research conducted specifically on respiratory health as seen
- The data collected will give us knowledge on how to address these trends to take progressive action in the remediation of affected homes and avoid negative respiratory health effects.

Future Research

- A questionnaire can be conducted on flood affected homeowners to aid us in understanding the perspective of homeowners on the formation of mold they may deem "not dangerous".
- ➤ Home inspections may be conducted to correlate the mold exposure of residents of an affected area to respiratory complications caused by specific mold species
- The correlation between mold growth due to flooding and adverse health effects will provide answers to how remediation can be conducted to prevent said respiratory illness

References

- Emerson et al., (2015) Impacts of Flood Damage on Airborne Bacteria and Fungi in Homes after the 2013 Colorado Front Range Flood
- ➤ He et al., (2014) The impact of flood and post-flood cleaning on airborne microbiological and particle contamination in residential houses
- ➤ Kontoyiannis et al. (2019) Culture-Documented Invasive Mold Infections at MD Anderson Cancer Center in Houston, Texas, Pre— and Post—Hurricane Harvey
- Moon, H. J. (2005) Assessing Mold Risks in Buildings under Uncertainty
- ➤ Nguyen et al. (2019) Asthma-Related Health Outcomes in New Jersey after a Natural Disaster Event
- ➤ Saporta et al. (2017) Increased Sensitization to Mold Allergens Measured by Intradermal Skin Testing following Hurricanes
- Sylvain et al. (2019) A different suite: The assemblage of distinct fungal communities in water-damaged units of a poorly maintained public housing building