
CASE STUDY: 1-Dimensional Viscous Burgers Equation

Physics Informed Neural Network Structure
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• 𝑢 is the velocity
• 𝑡 is time
• 𝑥 is the spatial coordinate

• 𝑣 is the kinematic viscosity 𝑣 > 0

•A fundamental partial differential equation that occurs in various areas of applied mathematics, including 

fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow.

•Burgers' equation combines nonlinear wave motion with linear diffusion, making it the simplest model for 

analyzing the combined effects of nonlinear advection and diffusion.
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PINN solves the 1D viscous Burger's equation, satisfying the initial 
condition 𝑢 𝑥 0 =      𝑥 and Dirichlet boundary 
conditions 𝑢   𝑡 = 𝑢    𝑡 = 0 modeling the evolution of the 
velocity field over space and time

PINN Numerical Solution

Physics-Informed Neural Networks: A Deep Learning 
Framework for Solving Differential Equations
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Research Objectives
• Develop a Physics-Informed Neural Network (PINN) framework to solve complex 

equations governing metal 3D printing processes, ensuring accurate modeling of 
the underlying physics.

• Compare the performance of PINNs with traditional numerical methods, such as 
Finite Element Methods (FEM), in terms of solution accuracy, computational cost, 
and scalability for high-dimensional problems.

• Assess the accuracy and computational efficiency of PINNs by analyzing their 
ability to capture key physical phenomena, optimize training strategies, and 
generalize across different printing conditions.
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Methods

• Focus: Using PINNs to solve Differential Equations, comparing them with
traditional numerical methods. Specifically, the 1-dimesonal Viscous Burgers
Equation

• Materials: PINNs trained using supervised learning, backpropagation, and
gradient descent.

• Error metric: Mean-Squared Error loss combining loss functions from differential
equations, boundary conditions, and initial conditions.

• Training process: Auto-differentiation computes derivatives to enforce physical
laws. Initial and boundary conditions incorporated into loss function. Model
iteratively trained to balance data-driven predictions with physical constraints.

• Benchmark Methods: Comparison with state-of-the-art numerical techniques,

including Finite Element Methods (FEM), to assess accuracy and computational

efficiency. The evaluation includes convergence rates, error analysis, and

resource usage.

Code Repository:

• Training performance shows significant loss reduction over 2000 epochs, 
decreasing from 0.4852 to 3.58e-5, demonstrating convergence.

Conclusions and Future Work
• Convergence and Performance: Rapid initial loss reduction 

with convergence around epoch 1100, maintaining stability 
thereafter. The Limited-memory Broyden–Fletcher–
Goldfarb–Shanno (LBFGS) optimizer effectively minimized 
loss, ensuring a good fit to the physics and specified 
conditions.

• Conclusions: Summarized findings highlight the effectiveness 
of PINNs in solving PDEs, demonstrating accuracy and 
computational efficiency. 

• Next Steps: Future work involves extending the PINN 
framework to solve multi-physics equations, specifically the 
heat equation for laser powder bed fusion.

Physics Informed Neural Networks

• Bridging Physics and Machine Learning: PINNs incorporate known 
physical laws into neural network training, ensuring solutions adhere to 
governing equations. 

• Efficient Solution for PDEs: Traditional numerical methods can be 
computationally expensive, while PINNs provide an alternative that 
leverages deep learning for efficiency. 

• Data-Efficient Approach: PINNs require fewer data points compared to 
purely data-driven models, as they rely on physics-based constraints to 
guide learning. 

• Versatility Across Domains: PINNs are applicable to various scientific 
and engineering problems, including fluid dynamics, material science, and 
medical imaging.

Boundary Conditions: 𝑢 𝑥 ±   𝑡 = 0
Initial Conditions: 𝑢 𝑥 0 =      𝑥
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