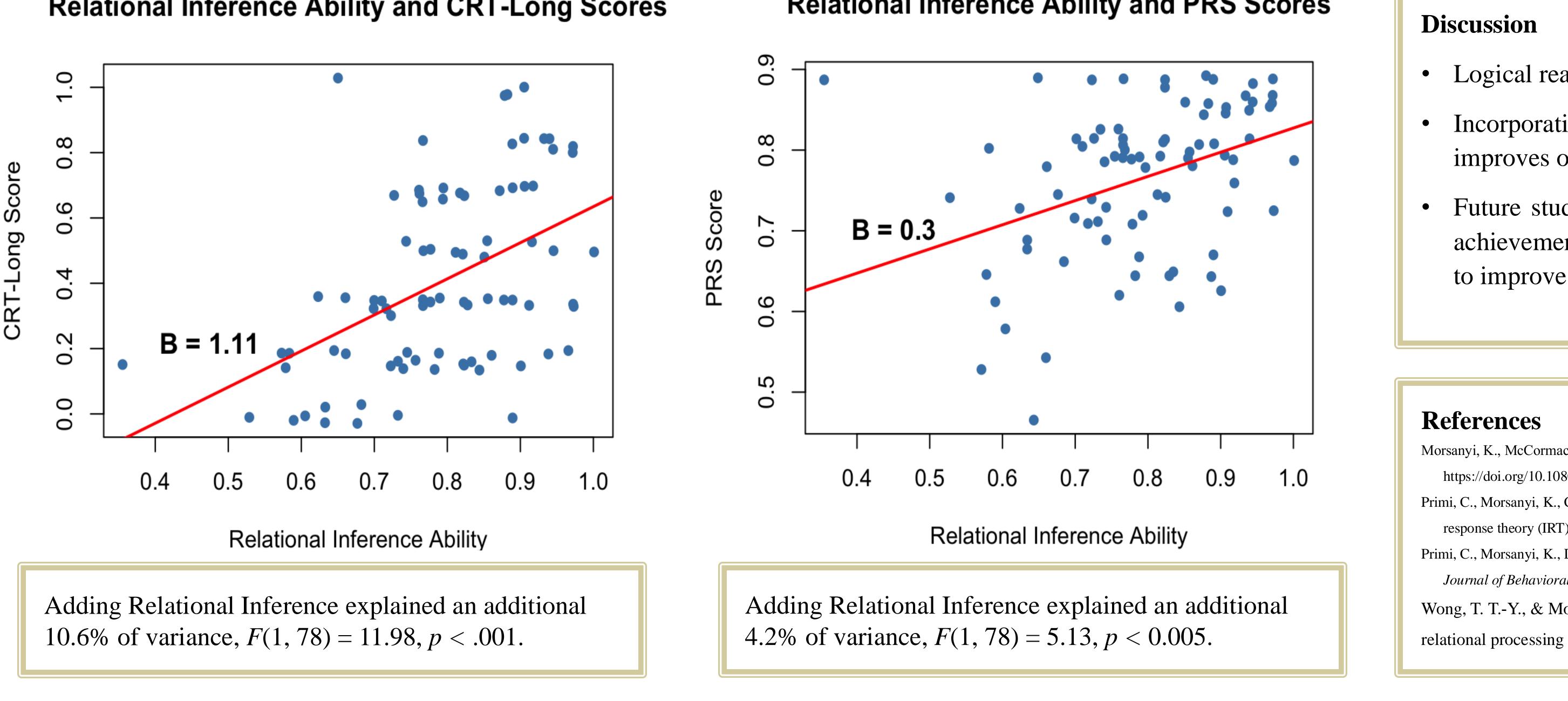
The Link Between Relational Inference and Math: What Kinds of Relations Matter? Tatiana Batista, David W. Braithwaite, PHD, Department of Psychology, Florida State University, Tallahassee, Florida


Introduction

- Mathematics often requires making inferences about rela information.
 - For example, if a > b, and b > c, we can infer a > c.
- This type of reasoning, transitive inference, has previous achievement (Handley et al. 2004; Morsanyi et al. 2013,
- However, relational inferences can involve other types of
- We propose that relational inference should be assessed including but not limited to transitive relations.
- We predict that Relational Inference, measured in this wa better than transitive inference alone...

Methods

- College-aged participants (N=85) completed tasks assess
- Math reasoning: CRT-Long and Probabilistic Reasoning
- Predictors: Transitive Inference, and (Other) Relational
- Controls: Conditional Inference and Ordering Ability (M

Relational Inference Ability and CRT-Long Scores

lationships from given	Table 1 <i>Type of Relations and Ex</i>
usly been linked to math 3, 2017, 2018). of relations other than transitive. I using a broad set of relations way, will predict math ability	Type of RelationEType of RelationIn a gIn a gMileTransitiveMile(Non-Reflexive)JinIn a gJoe isJoe isSoe isEquivalenceNate is
ssing: g Scale (Primi et al. 2016, 2017). Inference. Morsanyi et al. 2018).	In a gam Amber's : 3-Cyclical Beryl's m In a Non-Transitive (Indeterminate) R

Relational Inference Ability and PRS Scores

xamples		
Example		
Example Premises	Valid Conclusions	
group of three friends:		
ke is taller than Jim,	Mike is taller than Ben.	
n is taller than Ben.	Ben is NOT taller than Mike.	
group of three friends:		
s the same age as Nate,	Joe is the same age as Evan.	
s the same age as Evan.	Evan is the same age as Joe.	
ne of rock, paper, scissors:	Crystal's move beats Amber's move.	
move beats Beryl's move,	Amber's move does NOT beat	
nove beats Crystal's move.	Crystal's move.	
-		
a romantic comedy:		
Stacy loves Robb,		
Robb loves Jackson.	No valid conclusion can be made.	
NUUU IUVES JAUNSUII.	INO VAILU CONCIUSION CAN DE MAUE.	

- improves our ability to predict mathematical reasoning skills.
- to improve relational inference ability.

Morsanyi, K., McCormack, T., & O'Mahony, E. (2018). The link between deductive reasoning and mathematics. *Thinking & Reasoning*, 24(2), 234–257. https://doi.org/10.1080/13546783.2017.1384760

Primi, C., Morsanyi, K., Chiesi, F., Donati, M. A., & Hamilton, J. (2016). The development and testing of a new version of the cognitive reflection test applying item response theory (IRT). Journal of Behavioral Decision Making, 29(5), 453–469. https://doi.org/10.1002/bdm.1883 Primi, C., Morsanyi, K., Donati, M. A., Galli, S., & Chiesi, F. (2017). Measuring probabilistic reasoning: The construction of a new scale applying item response theory. Journal of Behavioral Decision Making, 30(4), 933–950. https://doi.org/10.1002/bdm.2011

Wong, T. T.-Y., & Morsanyi, K. (2023). The link between transitive reasoning and mathematics achievement in preadolescence: The role of relational processing and deductive reasoning. Thinking & Reasoning, 29(4), 531–558. https://doi.org/10.1080/13546783.2022.2095031

Table 2

Descriptive Statistics for all Tasks

T 1-	ЛЛ	CD
Task	Μ	SD
Transitive Inference	0.92	0.10
Relational Inference	0.79	0.12
CRT-Long	0.40	0.28
Probabilistic Reasoning	0.77	0.09
Conditional Inference	0.65	0.14
Ordering Ability *	0.00	0.79

* scored using combined z-scores.

Two linear regressions were conducted with CRT-Long and PRS as the dependent variables.

Model 1 Predictors : Transitive and Conditional Inference, and Ordering Ability

Model 2 Predictors: All of those in Model 1 plus Relational Inference

• Logical reasoning is critical in math but goes beyond reasoning about transitive relations.

Incorporating more relations into tasks designed to assess logical reasoning significantly

• Future studies could explore the potential pathways linking relational inference to math achievement, developmental trajectories for relational inference ability, and interventions