

MEMBRANES **Ernand Alzenor, Kyoungmin Kim & Daniel Hallinan**

Ionic Conductivity

Thickness (Area)(Resistance)

REFERENCES

Elozeiri, Alaaeldin AE, et al. "Water content of ion-exchange membranes: Measurement technique and influence on the ion mobility." Journal of Membrane Science 698 (2024): 122538.

 $\mathbf{K} =$

- B. Geise, Geoffrey M., et al. "Water purification by membranes: the role of polymer science." Journal of Polymer Science Part B: Polymer Physics 48.15 (2010): 1685-1718.
- C. Izquierdo-Gil, M.A., et al. "Water Uptake and Salt Transport Through Nation Cation-Exchange Membranes with Different Thicknesses." Chemical Engineering Science, vol. 72, 2012, pp. 1–9. Elsevier
- D. Sigwadi R, Dhlamini MS, Mokrani T, Nemavhola F, Nonjola PF, Msomi PF. The proton conductivity and mechanical properties of Nafion®/ ZrP nanocomposite membrane. Heliyon. 2019 Aug 27

ACKNOWLEDGEMENTS

I would like to thank Dr. Satheeshkumar Chinnadurai for synthesizing the polymer membranes used in this research. I would like to thank Dr. Justin Kennemur for allowing me to use the acid-base titration set-up at the laboratory he works in. I would also like to thank all of the members of the Dr. Hallinan lab for their support and guidance.

UNDERGRADUATE RESEARCH OPPORTUNITY PROGRAM

Water Content		IEC (mmol/g)	к (mS/cm)	
aCl	DIW			
0.15	0.70 ± 0.11	2.20 ± 0.15	5.11 ± 2.57	
)	0.32	0.93	0.035	