Do Range Size and Environmental Variables Predict the Benthic-to-Pelagic Shift of North American Minnows?

Abstract

This study aims to investigate the ecological and evolutionary mechanisms driving the shift of North American minnows from benthic to pelagic zones in freshwater ecosystems. Our finding of an on average larger range size in benthic species compared to pelagic species suggests that there are possible predictors of this transition. Through an analysis of species distribution data, including range size, and an examination of the environmental conditions within these ranges, this research examines the factors influencing this microhabitat shift and its potential consequences on ecosystem dynamics.

Fig. 1: Evolutionary history of mouth angle among leuciscid fishes (Burress and Hart, 2024)

The mouth angle of minnows is associated with their zone in the water column. Benthic species, depicted in blue, have inferior mouths while pelagic species, depicted in orange, have superior mouths. The phylogenetic tree above illustrates the shift from benthic-to-pelagic species, highlighting their divergence in their morphology and zone over time.

Cat Wigen

Dr. Maya F. Stokes – Department of Earth, Ocean, and Atmospheric Sciences

Materials

The study focused on 58 distinct minnow species from various assemblages within the Leuciscidae family, representing a mix of both benthic and pelagic species. To create the species' ranges, FishNet2 was used to gather the locations of various institutions' catalogued specimens. These locations were exported into presence points in QGIS. Then using the Minimum bounding geometry tool in QGIS' Vector Geometry, a Convex Hull was generated for each species' range. This polygon allowed us to visualize and quantify the range size.

Fig. 3 Range size of *Notropis baileyi* used for correction (USGS)

Be Ca Ca Ca Er Er Ex Ma

Results

enthic Species	Area (°)	_	Pelagic Species		Area (°)
ampostoma anomalum	801.685	2826	Notrop	is baileyi	56.18952
ampostoma oligolepis	168.800	1358	Notrop	is texanus	355.9992
ampostoma pauciradii	5.90657	3457	Notrop	is coccogenis	44.7656
imystax dissimilis	155.562	6194	Luxilus	zonistius	21.50792
imystax insignis	17.2565	4496	Cyprine	ella callistia	24.79839
oglossum laurae	26.2071	1781	Cyprine	ella galactura	102.4895
acrhybopsis aestivalis	309.619	0197	Cyprine	ella gibbsi	5.931208
acrhybopsis storeriana	339.946	///9	Cyprine	ella lutrensis	892.7547
ocomis leptocepnalus	134.52	0853	Cvprine	ella spiloptera	360.2308
ocomis micropogon	238.510	2000	Cvprine	lla trichroistia	17.17947
penacobius catostomus	4.49035	2909	Cvprine	ella venusta	207.9915
	5 31553	8267	Fricym	na amplamala	25,7245
inichthys stratulus	1574 60	9855	Notron	is amplamala	40 82374
ninichthys cataractae	1559.63	7485	Hudson		2117 596
annonanyo cataractae	1000.00	, 400	Notron	is hudenniue	1261 007
			Hyborn	athus havi	7/ 17///
			Hubaaa	acrius ridyr	14.1/444
			Hybops		463.996
			Hyboos		20 70220
			Notron		12 5252
			Notrop		12.5353
			Notrop	s chrosonius	29.53663
			Luxilus	cnrysocepnalus	258.6279
			Luxilus	zonatus	102.2
			Lythrur	us bellus	54.65441
			Lythrur	us fasciolaris	94.89009
			Lythrur	us fumeus	133.2255
			Notrop	is ammophilus	36.14692
			Notrop	is longirostris	35.08716
			Notrop	is scabriceps	13.43305
			Notrop	is atherinoides	1263.225
			Notrop	is cahabae	0.192602
			Notrop	is edwardraneyi	58.10114
			Notrop	is leuciodus	109.0111
			Notrop	is micropteryx	135.6708
			Notrop	is photogenis	87.54302
			Notropis stilbius		37.79407
			Notropis telescopus		103.497
			Notropis uranoscopus		5.336311
			Opsopo	oeodus emiliae	303.0117
			Notrop	is vollucellus	96.608
			Pimeph	ales vigilax	522.7116
			Pterono	otropis euryzonus	6.227729
			Pterono	otropis welaka	50.86285
				-	
		Aug A	00 (0)	St Day (9)	
	Avg. Are		=a (~)	SI. Dev. (*)	
Benthic Sp	ecies	ecies 356.7		765698 533.5594	

Acknowledgements

Pelagic Species

Burress, E. D., & Hart, P. B. (2024). Pelagic zone is an evolutionary catalyst, but an ecological dead end, for North American minnows. *Evolution*, 78(8), 1396–1404. https://doi.org/10.1093/evolut/qpae062

224.946127

419.0233

https://thefisheriesblog.com/wp-content/uploads/2018/09/minnows21.jpg https://nas.er.usgs.gov/queries/factsheet.aspx?SpeciesID=583

Next Steps

• Further analysis of specific environmental conditions and their significance would greatly improve our understanding of the benthic-to-pelagic shift of North American minnows.

river basins without fish presence from the convex hull would improve the accuracy of our estimates.

• Refining the range size analysis by excluding

• Reprojection of convex hulls from degrees to meters, again improving the accuracy of our estimates.

WIMSE

Conclusion

We did observe a pattern in range size and environmental conditions that gave insight into the benthic-to-pelagic shift of North American Minnows. On average, benthic species tend to have larger range sizes, which could suggest they are more adaptable to a wider variety of environmental conditions. As bottom feeders, they do not rely on unpredictable food sources but instead depend more on lithology. Their ideal habitat preferences being reliable suggests that they are more capable of occupying a variety of more diverse, widespread environments.

In contrast, pelagic species, which occupy the open water column, are more susceptible to fluctuating conditions, such as food sources, temperature, and water chemistry. Since these species are impacted by more specific environmental conditions needed for survival, their range size would naturally be more constrained.

A noticeable change in habitat selectivity could serve as an indicator for this microhabitat shift. Benthic species being pressured, whether by anthropogenic factors or natural changes, to reduce their range size or adjust their habitat preferences could be a signal for the need of a benthic-to-pelagic shift. Such pressures could provide a basis for understanding this evolutionary pattern.