

Robotics & Technology for Human Health & Mobility

	Introduction
	 This study explores a new way to predict when someone wants to walk faster or slower on a treadmill by analyzing their leg movements in real time. Using a motion-capture suit (Xsens), to track how a person hip, knee, and ankle angles change as they walk a metric called the Mahalanobis distance can be used to determine relevance of the recorded change in angle. The goal of our research is to create a personalized, responsive system that adapts to how people naturally mov which could help improve treadmills for rehab, sports training, or everyday fitness.
	Mahalanobis distance
•	Consider the equation: $x(n, t) \sim N(u(n, t), \Sigma(n, t))$
•	Where P is defined as:
•	Preliminary results showed that dividing the gait cycle into these four phases resulted in greater
•	than considering the whole gait cycle without phase divisions. t represents the number of time steps since that phase began, N symbolizes a Gaussian distribution, μ is the mean vector of the
•	To add data to the model one observation at a time, the mean and covariance estimates after the <i>n</i> th training observation are compute recursively via: $\mu_n = \frac{(n-1)\mu_{n-1} + x_n}{n}$
	$\Sigma_n = \frac{(n-1)\Sigma_{n-1} + (x_n - \mu_n)(x_n - \mu_n)^T}{n}.$
•	The real-time intent identification algorithm begins with a single new measurement data point $xnew$. The current gait phase p and time step t for $xnew$ are determined just as in model building. If this p and combination exists in the model, the current data point $xnew$ (p , t) is compared to that part of the model by assessing the Mahalanobis distance (MD) between it and the Gaussian distribution

Acknowledgements

We would like to thank Dr. Taylor Higgins and our other research teams in the RTHM lab at the Aero-Propulsion, Mechatronics and Energy (AME) Center. We would also like to thank Florida State University for providing us with the funding necessary to continue pursuing our research.

Gait Speed Intent Recognition Roy Blank, Konrad Schneider, Gabriel d'Esterhazy 1,2,3 Research Mentor: Taylor Higgins^{2,3}

1. Department of Electrical and Computer Engineering, FAMU-FSU College of Engineering 2. Department of Mechanical Engineering, Florida State University 3. Aero-Propulsion, Mechatronics and Energy Center, Florida State University

Methodology

•		
1'S		 A subject is first asked to wear an Xsens mocap suit fitted with motion sensors on all major points of motion across the body.
ve		 The lower body angle data received from a subject's Xsens suit are sent to a computer running MATLAB.
	•	The MATLAB program commands a Bertec treadmill to run a predetermined speed profile.
t		During an initial training phase, the subject walks with a variable speed based on the predetermined speed profile.
		The joint angle data and corresponding speed changes are recorded and used to build a personalized model linking gait to intent.
ed	•	In the subsequent testing phases, the model will predict speed adjustments in real time based on incoming joint angle data.
v d <i>t</i> is		We then test the accuracy of the model's predictions by comparing the system's predictions to the treadmill's actual speed, measuring how closely they match.
		The study's dual-phase de-sign (training/testing) is intended to ensure generalization across individuals, offering a framework for personalized human-robot interaction.

that send the orientation and speed data in conjunction with the

desired walking speed within one gait cycle and had a maximum of 87% accuracy at responding with the correct intent category

improves with the magnitude of the speed change, and that speed