

Abstract

The medical field is teeming with new technology and, in many ways, the medical fields' advancements have aided more efficient treatment. Despite this, physicians still rely on old techniques such as stethoscopes to detect heart abnormalities. The main problem with this method is the subjectivity of physicians' opinions. We've automated this process by creating an algorithm for a convolutional neural network which allows AI to differentiate normal heart beat sounds from abnormal sounds. In using this algorithm, we can form a standardized method by which doctors detect and diagnose heart diseases. Future studies should explore the difference in between algorithms and accuracy physicians.

Results

While the algorithm training is ongoing, we can expect with each additional training that its accuracy in differentiation will become more precise. By using existing heart files to create synthetic heart data for training, the algorithm's accuracy with different heart sounds will increase. The results for this algorithm are preliminary and a more detailed report can be concluded after more extensive training.

An Algorithm for Differentiating Abnormal Heartbeats Kendall Smith, Jonathan Adams College of Medicine

Met

Pre-T

- Initial algorithm pre-trained on a variety of so
- These sounds were used to train the algorithm basis for sounds heard in the heart audio files Tra
- We collected 25 samples per class of heartbea • Each sample was spliced into a 4-second au
- There were 3 iterations of the training cycle
- Algorithm was tasked with differentiating betw
- There were 23 classes of abnormal and normal
- In total, 1656 audio files were used for training
- A convolutional neural network was used to cr

Discussion

The standardization of diagnosis methods remains an important advancement needed in the medical field. While the results of our algorithm were preliminary, further tests will yield more accurate results. Future tests should study if the assistance of this algorithm decreases the amount of misdiagnoses by doctors. As the algorithm continues training, it's possible that it could become a tool used to differentiate types of abnormalities. Additional training is required to confirm the algorithms ability to handle more specifications.

thods	
raining ounds from street sounds to doos barking	References
to differentiate general noises and use them as a	Nolle, F. M., & Bowser, R. W (1992). Creighton University
at rhythm categorized by type of rhythm at of file	Ventricular Tachyarrhythmia Database [Data set]. physionet.org.
ween normal and abnormal heartbeats al heartbeats used	M
reate the synthetic heart sounds	
▲ ↓ NRun ■ C → Code ∨ ■	
100% 11/100 246/246 [00:42<00:00, 5.74it/s] loss: 1.2926 - accuracy: 0.5235 - val_loss: 1.2216 -	val_accuracy: 0.5424
Epoch 12/100 100% [][[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[val_accuracy: 0.5346
Epoch 13/100 100% 110000000 246/246 [00:44<00:00, 5.55it/s] loss: 1.2115 - accuracy: 0.5424 - val_loss: 1.1478 -	<pre>val_accuracy: 0.5502</pre>
Epoch 14/100 100% 11/10/10/10 246/246 [00:46<00:00, 5.32it/s] loss: 1.1710 - accuracy: 0.5659 - val_loss: 1.1159 -	val_accuracy: 0.5792
Epoch 15/100 100% [][[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[<pre>val_accuracy: 0.5904</pre>
Epoch 16/100 100% 11000000 246/246 [00:44<00:00, 5.52it/s] loss: 1.1269 - accuracy: 0.5857 - val_loss: 1.0389 -	<pre>val_accuracy: 0.6183</pre>
Epoch 17/100	

246/246 [00:45<00:00, 5.401t/s]

59