

Differential Scanning Fluorimetry: A High-Throughput Screening Method for Monitoring RNA Stability Chloé Dennis, Mentors: Victoria Ogunkunle, Nolan Blackford, Dr. Robert Silvers

Abstract

Functional RNAs are characterized by 3-D structure and ligand binding. The riboswitches Neomycin and PreQ1 are well-characterized molecules with clear structured transitions induced by ligand binding. These molecules can serve as a model system for developing tools to monitor structural transitions in RNA folds. We have developed a system which uses intercalating dyes to monitor structural transitions by differential scanning fluorimetry. Within data we are able to identify clear structural shifts for the ligand bound and unbound states of both the Neomycin and PreQ1 riboswitches. We anticipate this approach will be widely applicable to other functional RNAs such as riboswitches. These results are pertinent in this field and others because functional RNAs are critical regulators of gene expression.

Background

- Differential scanning fluorimetry (DSF) is a method that can be utilized to quantify protein stability.
- Intercalating dyes bind to the hydrophobic part of the protein
- Unfolding is measured as a function of fluorescence intensity with temperature

- Riboswitches regulate gene expression by binding to ligands.
- It consists of two domains
 - The aptamer domain: directly binds the ligand
 - The expression platform: regulates gene expression

Department of Chemistry and Biochemistry | Institute of Molecular Biophysics

— +PreQ1

80

60

Temperature (°C)

F

150000

100000

- 50000

Neomycin Riboswitch

Ligand Concentration (uM)	Neomycin T _M (°C)
10	59.27
60	82.87
80	82.65
120	84.64

- approximately 6°C.
- further stabilizes the PreQ1 Riboswitch.
- variation in their melting temperatures.

Comparing the data resulting from the DSF and UV methods further validates the DSF results. Conclusively, we demonstrate DSF as a high-throughput screening method for determining RNA stability.

Suess, J. Wöhnert, Angew. Chem. Int. Ed. 2016, 55, 1527. https://doi.org/10.1002/anie.201507365

I would like to thank my research mentors, Ms. Victoria Ogunkunle and Mr. Nolan Blackford, for their commitment and support during this project. I would also like to thank Dr. Silvers for allowing me to conduct this research in his lab.

Results

DSF of Neomycin Riboswitch with its ligands shows differing levels of stability depending on which ligand is bound

Conclusions

• PreQ1 binds to the PreQ1 Riboswitch and increases the melting temperature by

• Because of this increase in melting temperature, we can say that the presence of PreQ1

• The Neomycin-Sensing Riboswitch binds both Paramomycin and Neomycin, discriminating between the difference in the functional groups of each ligand. • Neomycin stabilizes the RNA more than the Paramomycin and this is observable by the

References

Mijeong Kang, Robert Peterson, Juli Feigon., Structural Insights into Riboswitch Control of the Biosynthesis of Queuosine, a Modified Nucleotide Found in the Anticodon of tRNA, Molecular Cell, Volume 33, Issue 6, 2009, Pages 784-790, ISSN 1097-2765, https://doi.org/10.1016/j.molcel.2009.02.019.

E. Duchardt-Ferner, S. R. Gottstein-Schmidtke, J. E. Weigand, O. Ohlenschläger, J.-P. Wurm, C. Hammann, B.

Acknowledgements