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The LabGenie project seeks to empower patients of low health literacy,
particularly the elderly, to ask contextualized questions and make informed health
decisions. Through the integration of retrieval-augmented generation (RAG)-
based large language models (LLMs) and a user-friendly platform, LabGenie will
generate answers based on accurate health information. In order to develop
LabGenie, we must conduct preliminary research on the viability of using LLMs
for clinical purposes. Our research currently involves two studies: 1) evaluating
the strengths and weaknesses of different LLMs in answering lab result questions
and 2) calculating the accuracies of LLMs when developing differential diagnoses.
We predict that large language models (LLMs) such as ChatGPT have opened a
promising avenue for patients to get their questions answered.

Project 1 — Methods & Results
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Figure 1. Schematic representation of methods for Project 1.
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Figure 2. Example lab test interpretation from GPT-4 and a human for Project 1.

Manual Evaluation of the LLM Responses and Human Response

Figure 3. Schematic representation of methods for Project 2.

Project 2 — Methods & Results
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Figure 4. Results of Project 1. Lower scores denote better capabilities.
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Figure 5. LLMs accuracies in diagnosis prediction for Project 2.

Principal Results:

1) Based on the results of our study, GPT-4 outperformed other similar LLMs,
such as Llama-2, MedAlpaca and ORCA_mini, according to both automated
evaluation and manual evaluation results. For the best results, it is important
to provide follow-up questions for additional information, to understand LLMs
should be used for clarification instead of diagnosis, and to recognize that the
validity of answers are hard to determine without the review of medical
professionals.

2) With lab test information provided, the results for the LLMs were fairly
variable. LLMs that had a low accuracy for one requested diagnosis, such as
Claude2 and Llama-2, saw an increase in accuracy as more diagnoses were
requested. Meanwhile, LLMs with a higher initial accuracy either stayed the
same or decreased as more diagnoses were requested. When lab test
information was not requested, there is an evident peak in accuracy across all
the LLMs when 5 LLMs were requested. Accuracy was notably higher for each
LLM with lab tests than without lab tests.

Future Directions:

1) Encourage thorough inquiries between the LLM and the user, have medical
professionals review LLM responses, experiment with prompt engineering,
provide standardized reference ranges, evaluate confidence levels of the
sentences, and develop gold-standard answers.

2) Increase sample size of case reports and ask the LLMs how the results of
specific lab tests influences their decision when forming diagnosis.

Conclusions

1) GPT-4 provided the most relevant, correct, helpful, and safe responses
compared to the other LLMs. However, while GPT-4 may be feasible for lab test
interpretation, there are still risks of hallucinations, which need to be
addressed before being used for diagnostic purposes.

2) Each of the LLMs had variable results when requested different numbers of
differential diagnoses as well as whether lab test results were given or excluded.
Without further research, we conclude that there are still risks when utilizing
LLMs for diagnosis, especially without lab test results.
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