

Background

Epigenetics = change in gene expression without altering gene sequence

Paramutation happens when one allele on a diploid locus epigenetically changes the gene expression of the other allele. In Zea mays, the phenotypic effects of paramutation in the *b1* locus can be seen in stem pigmentation.

- Homozygous B' = light stems
- Homozygous B-I = dark stems
- Heterozygous B'/B-I =light stems

Paramutation also exists in mice, *Arabidopsis*, flies, worms, and humans. Therefore, understanding more about the mechanism of paramutation in *Zea* mays will help us understand how paramutation operates in other organisms.

Gene	Paramutagenic allele (silenced by RdDM pathway)	Phenotype	Paramutable allele (transcribed but can be silenced)	Ph
b1	B'	Light stems	B-I	Dar

 Table 1: Effects of gene silencing

An example of epigenetics is paramutation in maize Zea mays.

- The booster1 (b1) gene controls how much anthocyanin is expressed in maize stems.
- The *b1* hepta tandem repeat (*b1TR*) DNA sequence is found 100 kb upstream to the *b1* gene.
- Proteins interacting with *b1TR* helps it enhance or silence the *b1* locus.

Figure 1: DNA model of ZAG4 possible interaction with *b1TR*. Created with BioRender.com

Single Locus Immunoprecipitation Proteomics (SLIP) was used to find these *b1TR*-binding proteins. One of the proteins found was ZAG4, which is involved in plant flowering and orthologous to the better-known Arabidopsis AGL5 protein. An yeast 1 hybrid assay will be done to confirm if ZAG4 binds to *b1TR*.

Figure 2: Left diagram illustrates the three transgenes used in SLIP. Right diagram shows the chromatin immunoprecipitation portion of SLIP. Modified from Lynn, 2020

Effect of ZAG4 in Paramutation of Zea mays

Julia Won¹, Yacob Gebreab¹, Kathryn Koirtyohann¹, Dr. Jason Lynn², and Dr. Karen McGinnis¹

¹Florida State University, ²Cold Spring Harbor Laboratory

Methods <u>cDNA:</u> >Zm00001eb120710_T001 DNA binding site 🦰 🇥 🦳 CAGAAATCAGAAGGGGATCGGA CACCTCACATACCTTCCCCTCC CTCCTCCCCGGCCCTCACATCC CACCCATECTCAACATEATEA 2. Found DNA-binding 1. Found *zag4* gene model in MaizeGDB domain with NCBI conserved domain search GAPC zag4 ----------------TGCCAGAGTTGGAGGTGTCA-5. Amplified *zag4* from 4. Designed *zag4* primers using NCBI cDNA with primers primer blast BstAP | 6597 Xba | 6591 Cvn | 6433 00 ra III 5681 EXP-AD502 7H I 5257 Sst || 4786 Sst || 4760 Aat || 4754 Not | 4715 Sex || 4686 Sex || 44515 BseR || 4431 Eco47 ||| 4410 Rsr || 4437 8. Transform yeast with 7. Inserted *zag4* clone into pEXP-AD502 prey and bait plasmids vector, the prey plasmid Results

- Alignment of ZAG4 with AGL5 indicated that the zag4 gene sequence encoded for the full-length protein (see step 3).
- PCR for the *zag4* gene resulted in the expected 868 bp product (see gel in step 5).
- TOPO-TA cloning with the *zag4* gene was successful (see step 6).
- The prey plasmid for the yeast 1 hybrid has been successfully made (see Figure 3).

- notype
- k stems

domain.

Figure 4: Prey and bait plasmids for the yeast 1 hybrid assay. Created with BioRender.com

research on DDT4.

Hollick, J.B. (2016). Paramutation and related phenomena in diverse species. Nature *Reviews Genetics*, *18*(1), 5–23. <u>https://doi.org/10.1038/nrg.2016.115</u>

Lynn, J.S. &. McGinnis, K.M. (2020). The Epigenetic Influences on Chromatin-Interacting Proteins and Transcriptional Responses to Stress in Maize. DigiNole. https://purl.lib.fsu.edu/diginole/2020_Summer_Fall_Lynn_fsu_0071E_16031

Discussion

For the yeast 1 hybrid assay, future steps will be to transform baker's yeast Saccharomyces cerevisiae RTY300 strain with the bait plasmid containing b1TR and the prey plasmid containing ZAG4. A positive control prey plasmid with a protein known to bind to the *b1TR* will be used. A negative control prey plasmid will also be constructed using ZAG4 without the DNA-binding

Acknowledgments

I would like to thank everyone who has guided and supported me throughout this project: Dr. McGinnis for funding and generating ideas for this project; Yacob Gebreab for assisting with each step of this project; Kathryn Koirtyohann for directing and teaching all the lab techniques; and Dr. Jason Lynn for doing preliminary research on DNA-protein interactions. Thank you to Dr. Washburn and Cheryl Pye of the Molecular Cloning Facility for their excellent work in making clones and plasmids. And a special thank you to my colleague Jaliyah Edwards for laying the basis for this project with her

References

Dorweiler, J.E., Carey, C.C., Kubo, K.M., Hollick, J.B., Kermicle, J.L., & Chandler, V.L. (2000). Mediator of paramutation1 is required for establishment and maintenance of paramutation at multiple maize loci. The Plant Cell, 12(11), 2101–2118. https://doi.org/10.1105/tpc.12.11.2101