

Introduction

- Maternal consumption of the Western diet (mWD) has many negative health consequences in offspring, and the underlying mechanism linking the two is not fully understood.
- GLP-1 is a neurotransmitter that regulates many of the behaviors and outcomes related to the mWD, such as appetite regulation, glucose metabolism, insulin sensitivity, and energy balance.
- There has been no prior investigation into whether mWD influences development of GLP-1 circuitry.
- To investigate this, we used Gcg-Cre/td-Tomato offspring and fed rat dams either WD or chow throughout pregnancy and lactation.
- GLP-1 is actively produced in two hindbrain nuclei: Nucleus of the Solitary Tract (NTS) and Intermediate Reticular nucleus (IRt)
- GLP-1 neuron anatomy and GLP-1 receptor neuron responsiveness were investigated within these two hindbrain regions
- The outcome of this research will reveal the effects of mWD on the development of the central GLP-1 system.

Methods

- Homozygous female Gcg-Cre rats were crossed with homozygous male tdTomato rat to produce heterozygous Gcg-cre/tdTomato offspring used in this study. These offspring express red fluorescent proteins (RFP) in all GLP-1-producing neurons.
- Introduced female rats to WD or chow before pregnancy and keep them on chosen diet throughout lactation. On postnatal day 21 (P21), all pups are weaned onto a chow diet. On P60, peptide Exendin-4 is administered through IP injection two hours before sacrifice. Exendin-4 binds to GLP-1 receptors, activating GLP-1R neurons.
- RFP expression allows for visualization and tracking of GLP-1 neurons, facilitating a detailed examination of their structure and where they are found in the brain.
- Visualized activated GLP-1 receptor neurons through cFos expression.
- Imaged P60 brains in 20x magnification (seen below).
- Used FIJI to analyze the number of GLP-1 neurons and amount of Ex-4-induced cFos expression.

The Neurodevelopmental Effects of Western Diet on the Central GLP-1 System Grace Elliott, Abigail Randolph, & Linda Rinaman Florida State University Department of Psychology

- diet offspring.

- metabolic health.
- - Ο

• The level of cFos examined in the western diet offspring was much lower than the level of cFos observed in the chow

• There was no observed difference in RFP expression in hindbrain GLP-1 neurons between dietary conditions. • This data is preliminary, and trends may change once more subjects are added.

Conclusion

If subsequent data follows this trend, it will suggest that maternal Western diet causes dysregulation of the GLP-1 system, which has significant implications for our understanding of early life environments and

Although our data is preliminary, a decrease in cFos suggests that there is a decrease in reactivity of the GLP-1R neurons within GLP-1 producing nuclei of mWD hindbrains.

Reduced responsiveness of GLP-1 receptors suggests that mWD can blunt GLP-1 signaling in offspring. GLP-1 plays a huge role in appetite regulation and glucose metabolism by providing a feeling of fullness after eating and enhancing insulin sensitivity.

• This data arouses speculation that consuming mWD during the gestation and lactation period may contribute to a decline in metabolic health. Blunted GLP-1 signaling may contribute negatively to overall metabolic health. • Poor metabolic health can lead to issues such as obesity, diabetes, cardiovascular disease, all of which are associated with increased risk for mortality.

References

• McLean, Brent A, et al. "Revisiting the Complexity of GLP-1 Action from Sites of Synthesis to Receptor Activation." *Endocrine Reviews*, vol. 42, no. 2, 15 Dec. 2020, pp. 101–132, <u>https://doi.org/10.1210/endrev/bnaa032</u>. Baggio, Laurie L., and Daniel J. Drucker. "Glucagon-like Peptide-1 Receptors in the Brain: Controlling Food Intake and Body Weight." Journal of Clinical Investigation, vol. 124, no. 10, 9 Sept. 2014, pp. 4223–4226, https://doi.org/10.1172/jci78371. Schulz, Corinna, et al. "How Gut Hormones Shape Reward: A Systematic Review of the Role of Ghrelin and GLP-1 in Human FMRI." Physiology & Behavior, Feb. 2023, p. 114111, https://doi.org/10.1016/j.physbeh.2023.114111. Brierley, Daniel I., et al. "Central and Peripheral GLP-1 Systems Independently Suppress Eating." Nature Metabolism, vol. 3, no. 2, Feb. 2021, pp. 258–273, <u>https://doi.org/10.1038/s42255-021-00344-4</u>.