Examining the Effect of State Electoral Institutions on Voter Turnout During Presidential Elections, 2004-2016

Omer Turkomer

Dr. Gomez

Department of Political Science

The Big Why?

- Recently, voter suppression and ballot access have become a very popular topic within political discourse.
- We all have assumptions, but <u>are they correct?</u>
 - Do expansive reforms increase voter turnout?
 - Do restrictive measures decrease voter turnout?
- Conventional wisdom would suggest yes, but does Political Science and more importantly, the data agree?

A look at past Political Science research

- Springer (2012) examined voter turnout in presidential election from 1920 to 2000
 - Her results found that:
 - (1) Only a very <u>small</u> number of expansive laws significantly increased voter turnout in non-southern states
 - (2) Expansive laws had <u>no</u> effect in southern states where turnout rates were the lowest.
 - But how could this be????

Expansive reforms <u>increase</u> voter turnout in presidential elections.

- Voter registration opportunities will <u>increase</u> voter turnout
- More liberal voting procedures will <u>increase</u> voter turnout

Hypothesis

Regressive reforms will <u>decrease</u> voter turnout in presidential elections

- Residency length requirements will <u>decrease</u> voter turnout
- Voter ID Laws will <u>decrease</u> voter turnout

Methodology: Variables

Dependent Variable:

 Voter turnout during presidential elections per state

Independent Variables:

- Residency requirements
 - Residency Length Requirements
- Voter registration:
 - Election day registration
 - No-Excuse Absentee voting
 - Registration Closing Date
- Voting procedures
 - Polling location hours
 - Voter ID Laws

Methodology: Data Collection

- State voter turnout during presidential elections was calculated as a percentage of total presidential votes cast in the state divided by the state's voting eligible population.
 - State voter turnout (%) = $(\frac{Total\ Presidential\ Votes\ Cast}{Total\ voting\ eligible\ population}) \times 100$
- All data was collected from The Book of States, Ballotpedia, The National Conference of State Legislatures as well as state-specific voter guides.

sta	ate	year	presvotes	VAPth	VAPtotal	voterturnou	pervoterturnout		closing t	otalophou	closingdate ele	ectdayreg	NEAvote	voterIDlav	residencyı
Al	labama	2004	1,883,415	3,436	3,436,000	0.54814173	54.81%	7	7	12	10	0	0	1	1 0
Al	laska	2004	312,598	467	467,000	0.66937473	66.94%	7	8	13	30	0	0	1	1 0
Aı	rizona	2004	2,012,585	4,197	4,197,000	0.47952943	47.95%	6	7	13	29	0	0	1	1 1
Aı	rkansas	2004	1,054,945	2,076	2,076,000	0.50816233	50.82%	7:30	7:30	12	30	0	0	1	1 0
Ca	alifornia	2004	12,421,353	26,297	26,297,000	0.47234867	47.23%	7	8	13	15	0	0	() (
Co	olorado	2004	2,129,630	3,423	3,423,000	0.62215308	62.22%	7	7	12	29	0	0	1	1 1
Co	onnecticut	2004	1,578,769	2,665	2,665,000	0.59240863	59.24%	6	8	14	14	0	0	1	1 0
De	elaware	2004	375,190	637	637,000	0.58899529	58.90%	7	8	13	20	0	0	1	
Fl	orida	2004	7,609,810	13,394	13,394,000	0.56815066	56.82%	7	7	12	29	0	C	1	1 0
G	eorgia	2004	3,301,875	6,497	6,497,000	0.50821533	50.82%	7	7	12	29	0	C	1	1 0
Ha	awaii	2004	429,013	964	964,000	0.44503423	44.50%	7	6	11	30	0	C	1	
Id	aho	2004	598,376	1,021	1,021,000	0.58606856	58.61%	7	8	13	25	0	C	() 1
III	linois	2004	5,274,322	9,475	9,475,000	0.55665668	55.67%	6	7	13	28	0	C	() 1
In	diana	2004	2,468,002	4,637	4,637,000	0.5322411	53.22%	6	6	12	29	0	0	() 1
Io	wa	2004	1,506,908	2,274	2,274,000	0.66266843	66.27%	7	9	14	10	0	C	() (
Ka	ansas	2004	1,187,756	2,052	2,052,000	0.57882846	57.88%	6	8	14	15	0	0	() (
Ke	entucky	2004	1,795,882	3,166	3,166,000	0.56724005	56.72%	6	6	12	29	0	0	1	1 1
Lo	ouisiana	2004	1,943,106	3,351	3,351,000	0.57985855	57.99%	6	8	14	30	0	0	1	1 0
M	laine	2004	740,752	1,035	1,035,000	0.71570242	71.57%	6	8	14	0	1	0	() (
M	laryland	2004	2,384,238	4,163	4,163,000	0.57272111	57.27%	7	8	13	21	0	0	() (
M	lassachusetts	2004	2,927,455	4,952	4,952,000	0.5911662	59.12%	7	8	13	20	0	0	() (
M	lichigan	2004	4,839,252	7,579	7,579,000	0.63850798	63.85%	7	8	3	30	0	0	1	1 1
M	innesota	2004	2,828,387	3,861	3,861,000	0.73255297	73.26%	7	8	13	0	1	0	() 1
M	lississippi	2004	1,139,824	2,153	2,153,000	0.52941198	52.94%	7	7	12	30	0	0	() 1
M	lissouri	2004	2,731,364	4,370	4,370,000	0.62502609	62.50%	6	7	13	28	0	0	1	
M	lontana	2004	450,434	719	719,000	0.62647288	62.65%	7	8	13	30	0	C	1	1
Ne	ebraska	2004	778,186	1,313	1,313,000	0.59267784	59.27%		7	12	14	0	C	() (

Methodology - Data Analyses

- Pooled time-series and cross-sectional models
 - Time series analyses were conducted within each state, then cross sectional models were created by pooling all state time series analyses
 - For continuous (1, 2, 3, 4...) independent variables association was identified using regression models.
 - For categorical (0, 1, 1, 0...) independent variables group differences were identified using t-tests

Preliminary Results: Regression

Voting Procedures: Polling Hours

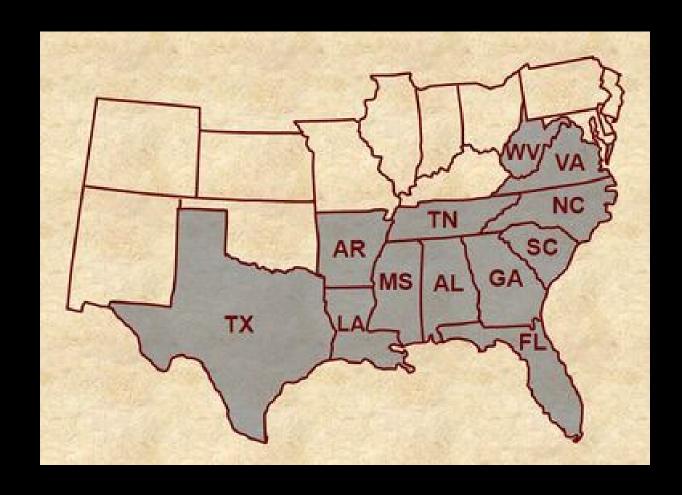
 No statistically significant correlation found between number of hours poll locations were open and voter turnout Voter Registration: Registration closing

 Statistically significant weak positive correlation found between registration closing date and voter turnout

Preliminary Results: t-test

States with No Excuse Absentee Voting had no statistically significant difference in voter turnout than states without No Excuse Absentee Voting

States with Election day registration on average had a statistically significantly higher voter turnout than states with no election day registration


States with Residency requirements had no statistically significant difference in voter turnout than states with no residency requirements

States with <u>Voter ID Laws</u> on average had a statistically significantly lower voter turnout than states with no Voter ID Laws

Preliminary Results continued

- For all southern states the same variables had a positive impact on voter turnout*:
 - Election Day Registration
 - Registration Closing Date

*However, even though they had a positive association with increased voter turnout, the association was less strong than those in non-southern states, but the difference was not to a statistically significant degree

Preliminary Results

Statistically Significant

- Voter ID Laws
- Election Day Registration
- Registration Closing Dates

Not Statistically Significant

- No Excuse Absentee Voting
- Residency Requirements

Implications

Electoral institution's impact between Southern and Non-southern states has <u>decreased</u>.

Legislative changes within the past decade that impact electoral institutions have had an impact that more closely resembles what our conventional wisdom suggests.

What's Next? ...For Omer

- More data needs to be collected regarding same-day registration as well as in-person early voting in order to get a more holistic picture of the effects of electoral institutions
- Furthermore, data on noninstitutional factors need to be collected such as the electoral calendar, vote margin, and demographic composition (education per capita income, age) to account for other variables that could affect voter turnout
- Additionally, more comprehensive data analyses that accounts for these additional variables need to be conducted.

What's Next? ...For Political Science

- This study combines the data from a time period that includes numerous significant changes to electoral institutions such as the Help America Vote Act of 2002, Crawford v Marion County Election Board.
- As such, it is hard to determine the specific impact each variable had in terms of altering the degree of voter turnout.
- This study also does not include data from the 2020 election, which led to a lot of changes in people's electoral beliefs as a whole. This could be further examined as a potential variable in examining voter turnout, especially in the South, where changes in electoral beliefs tend to be more likely to be impactful.

Acknowledgements

- Thank you to Professors Brad Gomez and Robert Jackson, as well as PhD Candidate Justin Crofoot for their unwavering support, mentorship, and guidance.
- Thank you to the Center for Undergraduate Research and Academic Engagement for helping me find my interest in research through the UROP program, as well as for this grant opportunity and the opportunity to present my work.
- Thank you to all of my friends for all their encouragement and support through this unique experience.

References

- Brians, C. L., & Grofman, B. (2001). Election Day Registration&Apos;S effect on U.S. voter turnout. Social Science Quarterly, 82(1), 170–183. https://doi.org/10.1111/0038-4941.00015
- Burden, B. C., Canon, D. T., Mayer, K., & Moynihan, D. P. (2010). Election laws, mobilization, and turnout: The unanticipated consequences of election reform. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1690723
- Green, D., Sondheimer, R., Welch, K., & Quddus, S. (2017). Using experiments to estimate the effects of education on voter turnout. *AEA Randomized Controlled Trials*. https://doi.org/10.1257/rct.1097
- Larocca, R., & Klemanski, J. S. (2011). U.S. State Election Reform and Turnout in Presidential Elections. State Politics & Policy Quarterly, 11(1), 76–101. http://www.jstor.org/stable/41575814
- Li, Q., Pomante, M. J., & Schraufnagel, S. (2018). Cost of voting in the American States. *Election Law Journal: Rules, Politics, and Policy*, 17(3), 234–247. https://doi.org/10.1089/elj.2017.0478
- Springer, M. J. (2012). State Electoral Institutions and Voter Turnout In Presidential Elections, 1920–2000. State Politics & Policy Quarterly, 12(3), 252–283. http://www.jstor.org/stable/24710885